Exploring the staining potential of GSK-3 inhibitors in bovine teeth: a one-year laboratory investigation

Jelena Karacic¹, Florin Eggmann¹, Roland Weiger¹, Lucia K. Zaugg²

Accepted for publication August 7, 2023

¹Department of Periodontology, Endodontology, and Cariology, University Center for Dental Medicine Basel UZB, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland

²Department of Reconstructive Dentistry, University Center for Dental Medicine Basel UZB, University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland

Keywords
Capping material, spectrophotometry, Tideglusib, tooth discoloration, vital pulp therapy

Correspondence:
Jelena Karacic
Klinik für Parodontologie, Endodontologie und Kariologie
Universitäres Zentrum für Zahnmedizin Basel UZB
Mattenstrasse 40
CH-4058 Basel
Tel. +41 61 267 26 82
E-Mail: jelena.karacic@unibas.ch
Abstract

GSK-3 inhibitors, such as Tideglusib (TG) and CHIR-99021 (CHIR), show promise in stimulating reparative dentin formation. The aim of this study was to assess the discoloration potential of TG and CHIR in an established in vitro model.

Enamel-dentin specimens made from bovine incisors were randomly allocated to five groups (n=15 each): group bovine blood (BB), group dimethyl sulfoxide (DMSO), group TG, group CHIR, and group mineral trioxide aggregate (MTA). Each specimen had a central cavity in which the respective material was applied and sealed with resin-based luting material. Color determination was conducted using a dental spectrophotometer at t₀ (before filling), t₁ (immediately after filling), t₂ (after one week), t₃ (after one month), t₄ (after three months), t₅ (after six months), and t₆ (after one year). Statistical analysis involved descriptive statistics, Kruskal-Wallis tests, and analysis of variance (α=0.05).

Group BB and group CHIR exhibited the most significant decrease in lightness (∆L*) after one year (∆L* -4.7 and ∆L* -5.7, respectively), whereas groups DMSO, TG, and MTA showed minimal changes (DMSO ∆L*: -0.3; TG ∆L*: 1.4; MTA ∆L*: -0.5). Group BB and CHIR exhibited the highest ∆E values (6.4±0.6 and 6.5±0.8, respectively).

Unlike CHIR, TG did not result in discoloration exceeding the threshold of visual perception, defined by a ∆E value of 5.5, during the one-year observation period. This laboratory study therefore suggests that TG could be utilized for indirect or direct pulp capping without major discoloration concerns. However, additional research is required to corroborate these findings.
Introduction

Dental injuries and deep carious lesions can lead to pulp exposure. When signs and symptoms are absent, the primary objective of treating such lesions is to preserve the vitality and health of the pulp tissue (Ricucci et al. 2014; Bjørndal et al. 2019). Various operative treatment approaches are available for maintaining pulp vitality, including indirect and direct pulp capping, partial pulpotomy, and complete pulpotomy. Preserving pulp vitality offers numerous benefits. The dentin-pulp complex can continue fulfilling its developmental, defensive, and proprioceptive functions. In addition, teeth with a vital pulp have a more favorable long-term prognosis regarding tooth survival compared with those that have undergone root canal treatment (Caplan et al. 2005; Leong & Yap 2021).

The gold standard materials for indirect and direct pulp capping comprise calcium hydroxide pastes and hydraulic silicate cements, including but not limited to mineral trioxide aggregate (MTA), Biodentine, Endocem MTA, EndoSequence, and others (Duncan et al. 2019; Dammaschke et al. 2019; Parirokh et al. 2018). Hydraulic silicate cements exhibit high mechanical resistance and can set in both dry and moist environments (Camilleri & Pitt Ford 2006; Parirokh & Torabinejad 2010; Torabinejad & Parirokh 2010; Dammaschke et al. 2019). On the other hand, calcium hydroxide pastes are less mechanically stable and susceptible to resorption and porosities over time at the site of pulp capping (Dammaschke et al. 2019). Both hydraulic silicate cements and calcium hydroxide pastes release calcium hydroxide ions during the setting process, which contribute to their high antibacterial properties but may also cause local tissue damage owing to chemical irritation (Spångberg 1969; Meadow et al. 1984; Briseño & Willershausen 1992).

It has been observed that localized cell death resulting from this mechanism leads to the release of inflammatory mediators, which subsequently activate tissue
regeneration pathways and promote the formation of reparative dentin (BABB ET AL. 2017). This process involves the mobilization and proliferation of mesenchymal stem cells from the pulp tissue, which can differentiate into new odontoblast-like cells and initiate the secretion of reparative dentin (BABB ET AL. 2017).

Based on a molecular understanding of the cellular signaling pathways involved in regenerative/reparative dentin formation, researchers have investigated pharmacological treatments that directly activate these pathways using specific molecules, inducing regulated reparative processes and promoting cellular differentiation (NAKASHIMA & REDDI 2003; THESELEFF & TUMMERS 2008; GALLER ET AL. 2014). Collagen sponges loaded with these molecules have been utilized to administer the treatment by placing them on the exposed pulp. Following application, controlled degradation of these collagen sponges allows for their integration within the structure of reparative dentin (NEVES ET AL. 2017; ZAUGG ET AL. 2020).

The novel treatment approach under investigation involves the use of glycogen synthase kinase 3 (GSK-3) inhibitors as pharmacological agents. GSK-3, a protein kinase, modulates the Wnt signaling cellular pathway (VISHWAKARMA ET AL. 2015). Laboratory studies have demonstrated that GSK-3 inhibitors stimulate the proliferation and viability of human dental pulp stem cells (HANNA ET AL. 2023; KORNSUTHISOPON ET AL. 2023) and elicit the formation of reparative dentin in animal models following pulp exposure (NEVES ET AL. 2017; ZAUGG ET AL. 2020). The Wnt signaling cellular pathway assumes a crucial role in reparative dentin development in cases of pulp exposure. Remarkably, the activity of the Wnt signaling pathway can also be activated in dentin damage without pulp exposure, as observed in indirect pulp capping, resulting in the formation of reactionary dentin and thickening of the dentin wall beneath the "near exposure" (NEVES & SHARPE 2018). These findings suggest that novel medicaments
utilizing GSK-3 inhibitors hold promise for both direct and indirect pulp capping in the future.

Tideglusib (TG), a non-competitive GSK-3 inhibitor, has been the subject of clinical trials for Alzheimer therapy (ELDAR-FINKELMAN & MARTINEZ 2011; WANG ET AL. 2021). Notably, no adverse reaction profile was described for TG (ELDAR-FINKELMAN & MARTINEZ 2011). Another potent ATP-competitive GSK-3 inhibitor, CHIR-99021 (CHIR), an aminopyrimidine, has demonstrated its ability to activate the Wnt signaling pathway, leading to enhanced self-renewal and pluripotency in mouse stem cells (ELDAR-FINKELMAN & MARTINEZ 2011; WU ET AL. 2013). Both CHIR and TG have exhibited promising outcomes in preclinical research regarding reparative dentin formation, prompting considerations for their potential clinical application in dentistry (NEVES ET AL. 2017; NEVES & SHARPE 2018; ZAUGG ET AL. 2020; ALOHALI ET AL. 2022).

One drawback associated with early market-stage MTA products was their propensity for significant tooth discoloration (NAIK & HEGDE 2005; LENDERR ET AL. 2012; KRASLT ET AL. 2013; DETTWILER ET AL. 2016; ABUELNIEL ET AL. 2020). Recent investigations attribute this discoloration to the presence of the radio-opaque marker bismuth oxide, prompting the modification of formulations using alternative, non-discoloring radio-opaque markers (KANG ET AL. 2015; KESKIN ET AL. 2015; XUEREB ET AL. 2016; MARCIANO ET AL. 2019). These findings underscore the importance of laboratory research in evaluating dental materials to identify potential adverse effects, including their propensity for discoloration.

In recent years, there has been a surge in studies exploring the molecular mechanisms and potential therapeutic applications of GSK-3 inhibitors. However, as of today, there is a lack of published evidence regarding the discoloration potential of these inhibitors. Thus, the objective of this study was to evaluate the discoloration potential of GSK-3 inhibitors in a well-established in vitro setup.
Material and methods

Sample size calculation

Based on data reported in a previous study, an a priori sample size calculation was performed (LENHERR ET AL. 2012). A change of luminosity mean values (Lmean) of 92 to 90 with a standard deviation of 2.2 was assumed as the effect size between the control group and the test groups. By setting the type I (two-sided) and type II error rates at 5% and 20% respectively, establishing a significance level of 5%, and aiming for a test power of 80%, a minimum of 10 samples per group was determined as necessary. To ensure a prudent safety margin, accounting for the possibility of subtle variations in discoloration outcomes, a total of 15 specimens per group were included.

Specimen preparation

A total of 75 specimens were produced using a methodology previously described in detail by LENHERR ET AL. (2012). The source material consisted of bovine incisors obtained from calves slaughtered in a commercial slaughterhouse and stored in tap water at room temperature. The crown and root of each tooth were separated at the cemento-enamel junction by using a diamond-coated cutting disk, which was continuously cooled with water. From the middle third of each crown, rectangular enamel-dentin slabs measuring 10 mm in length, 10 mm in width, and 3 mm in thickness were excised. Subsequently, an oral surface cavity with dimensions of 2.5 mm in diameter and 2.0 mm in depth was created in each enamel-dentin slab using a water-cooled cylindrical diamond bur. To ensure uniformity, the length, width, and thickness dimensions of all specimens were verified using a digital caliper.

Disinfection procedure
The specimens were treated by immersing them in 1% sodium hypochlorite (NaOCl; Toppharm Apotheke Hersberger, Basel, Switzerland) for a period of 30 minutes. Subsequently, they were thoroughly rinsed with tap water, dried using compressed air, and submerged in 20% ethylenediaminetetraacetic acid (EDTA, Toppharm Apotheke Hersberger, Basel, Switzerland) for 2 minutes to eliminate the smear layer. After rinsing with copious amounts of tap water and drying with air, the specimens were immersed in 1% NaOCl for an additional 3 minutes. Finally, the specimens were thoroughly washed with tap water and placed in 0.9% saline (Grosse Apotheke Dr. G. Bichsel, Interlaken, Switzerland) for storage in an area with indirect sunlight.

Experimental groups

The specimens were randomly allocated to five groups using computer-generated sequences created with free online software (www.randomizer.org). Each group consisted of 15 specimens (Tab. I), and the same amount of liquid (1μL) and collagen sponges (Kolspon; Eucare, Chennai, India) were used. The sponges were cut according to the dimensions 2 mm x 2 mm x 2 mm and placed in the cylindrical cavity prior to injecting the liquid. Group BB was designated as positive control group using bovine blood (Bell Schweiz, Oensingen, Switzerland). In group DMSO, dimethyl sulfoxide (DMSO, Sigma-Aldrich/ Merck, Darmstadt, Germany), a polar aprotic solvent and organosulfur compound, was dispensed onto the sponge previously placed in the cylindrical cavity of the specimens. In groups TG and CHIR, 50nM TG (Sigma-Aldrich/ Merck, Darmstadt, Germany) and 5μM CHIR (Sigma-Aldrich/ Merck, Darmstadt, Germany), respectively, were dissolved in DMSO and subsequently administered into each cavity. In group MTA, the non-discoloring formula of mineral trioxide aggregate (MTA) powder and liquid (PD-MTA, Produits Dentaires SA, Vevey, Switzerland) were thoroughly mixed at a ratio of 3:1 until a homogeneous mixture was achieved. The
resulting mixture had a creamy consistency and was promptly applied into the cylindrical cavities without any sponge.

After the application of the material in each group, the cylindrical cavities were sealed with self-adhesive resin-based luting material (RelyX Unicem2 Aplicap, 3M, St. Paul, MN, USA). The luting material was light cured for 20 s at an irradiance of 907 mW/cm² (SmartLite Focus, Dentsply Sirona, Charlotte, NC, USA). The tip of the curing light, whose emission spectrum ranged from 420 nm to 540 nm, was positioned as close as possible to the resin-based material without touching it during light curing. After light curing, the specimens were placed in individual test tubes (Standard Micro Test Tube 3810, Eppendorf, Hamburg, Germany) containing 0.9% saline (Grosse Apotheke Dr. G. Bichsel, Interlaken, Switzerland). The test tubes were then stored at room temperature, ensuring they were kept away from direct sunlight.

**Spectrophotometric color determination**

Color determination was performed using a dental spectrophotometer (Vita EasyShade Compact, Vita, Bad Säckingen, Germany) (LEHMANN ET AL. 2011). The measurements were performed exclusively under the illumination provided by the experimental setup's lamp (Lamp Trio 1 [max. 40W, 230V/50Hz] with a light-emitting diode bulb [OSRAM, 40W, Classic B, 230V, E14, SES], both purchased from Migros, Zurich, Switzerland) within a dark room. The spectrophotometric measurements were taken at multiple time points, including baseline (t0), immediately after filling (t₁), and subsequently after one week (t₂), one month (t₃), three months (t₄), six months (t₅), and one year (t₆). Before each group measurement, the spectrophotometer was calibrated following the manufacturer's instructions. The color parameters recorded and measured according to the Lab* color space were as follows: L* (lightness), a* (red-green coordinates), and b* (blue-yellow coordinates).
Statistical analysis

To describe the appearance of color, descriptive statistics were used for $L^*$, $a^*$, and $b^*$ values for each time interval and the color difference between baseline ($t_0$) and after one year ($t_6$) was calculated using the following formula:

$$\Delta L^* = L^*_t - L^*_0$$

$$\Delta a^* = a^*_t - a^*_0$$

$$\Delta b^* = b^*_t - b^*_0$$

To assess the relative color change ($\Delta E$) after one year, the following formula was applied:

$$\Delta E^{*ab} = ((\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2)^{1/2}$$

The normality of the data was assessed using both the Kolmogorov-Smirnov and Shapiro-Wilk tests. For between-group analysis, the Kruskal-Wallis test was employed. Univariate and multivariate analysis of variance (ANOVA) were conducted for $\Delta E$ and $\Delta L$. Pairwise comparisons were performed using the Bonferroni and post-hoc Tukey tests. The significance level was set at $\alpha = 0.05$. All analyses were carried out by an unblinded investigator utilizing SPSS Statistics software (version 28, IBM, Armonk, NY, USA).

Results

All values showed a normal distribution except TG at $t_0$ and $t_6$ for value $a^*$. The $L^*a^*b^*$ mean values at baseline ($t_0$) and after one year ($t_6$) and the differences over this period ($\Delta L^*t_6-t_0, \Delta a^*t_6-t_0, \Delta b^*t_6-t_0$) are reported in Tab. II. Group BB and CHIR presented the most pronounced changes in lightness ($\Delta L^*$) during the observation period with a decrease of $L^*$ after one year (BB $\Delta L^* -4.7 \pm 3.5$ CHIR $\Delta L^* -5.7 \pm 3.3$; Tab. II). A similar range of $L^*$ values with only slight changes after one year were found for group DMSO.
with $L^*$ -0.3±1.7, group TG with $\Delta L^*$ 1.4±1.1 and group MTA with $\Delta L^*$ -0.5±1.5. A decrease in $L^*$ was observed in group DMSO and MTA, while $L^*$ of group TG increased, though not significantly. Group BB and CHIR showed significant changes in lightness ($\Delta L^*$) after one year of observation compared to the remaining groups DMSO, TG and MTA ($p<0.001$), while no significant difference was found between BB and CHIR.

The relative color changes ($\Delta E$) after one year were reported highest for group BB and CHIR with 6.4±0.6 and 6.5±0.8, respectively. The remaining groups exhibited $\Delta E$ values ≤ 4 (group DMSO: 2.7±0.4, TG: 4.0±0.2 and MTA: 2.8±0.2; Tab. II). Significant changes were recorded between group BB to group DMSO ($p<0.001$), group TG ($p<0.01$) and group MTA ($p<0.001$), but not to group CHIR ($p<0.999$). Group CHIR also showed significant differences compared with these three groups (DMSO $p<0.001$, TG $p<0.005$, MTA $p<0.001$).
Discussion

This study sought to explore the discoloration potential of two GSK-3 inhibitors, specifically TG and CHIR. These GSK-3 inhibitors have garnered attention as potential direct and indirect pulp capping materials for future use. Employing an established in vitro setup, first described by Lenherr et al. (2012), our findings did not substantiate the hypothesis that TG exhibited significant discoloration potential. However, significant changes in lightness and color were observed in the case of CHIR. The observed alterations in color for CHIR hold clinical significance, as previous research has suggested that discolorations with a ΔE value exceeding 5.5 become perceptible to the average patient and could be deemed unacceptable (Day et al. 2011). Additionally, Westland et al. (2017) investigated the threshold values at which changes in color become noticeable to the average observer. Their study revealed that a change of 1.1 ΔL*, 3.2 Δa*, and 1.5 Δb* could be discerned. CHIR therefore, requires additional assessment of its discoloration potential. Future research should focus on comprehensively investigating the characteristics of CHIR products to ascertain their suitability for clinical use in dentistry.

Compared with the findings of previous studies (Lenherr et al. 2012; Dettwiler et al. 2016), our present investigation revealed a noticeably reduced discoloration effect caused by bovine blood in the positive control group. This disparity can be attributed to a subtle modification in our experimental approach. Specifically, like groups DMSO, TG, and CHIR, the control group used only 1 μl of material, resulting in a minimal amount of blood being employed. Additionally, our study did not include any groups combining blood with drugs. These factors likely played a crucial role in the observed decrease in discoloration intensity, highlighting the importance of both the quantity of staining compounds and the interactions among different compounds in the process of tooth discoloration. This finding underscores the significance of carefully considering
the dosage and combinations of substances to gain a comprehensive understanding of discoloration mechanisms.

The L*a*b* color space is a three-dimensional color model that describes colors based on three components: L* represents lightness, a* represents the red-green axis, and b* represents the yellow-blue axis. When assessing color changes in the bovine specimens, the data of changes in L*a*b* values provided additional insight compared with the use of ∆E, which represents the overall color difference between two samples. While ∆E is a useful metric for comparing color changes, it does not provide detailed information about the specific aspects of color alteration, such as lightness or hue shifts. By analyzing the changes in L*a*b* values, specific aspects of color transformation could be evaluated. It is noteworthy to observe that, despite the rigorous process of sample randomization, the control group exhibited lower baseline L* values in comparison with the other groups. This disparity may introduce a subtle bias into the results, warranting consideration in the interpretation of the findings.

A potential hindrance to the clinical utilization of GSK-3 inhibitors lies in the limited availability of application forms. These inhibitors are solely accessible in a dissolved state within DMSO, commonly combined with collagen sponges. In contrast, calcium hydroxide exists in a paste form, enabling convenient application. However, ongoing investigations are exploring alternative application forms for GSK-3 inhibitors, aiming to enhance practicality and ease of use. For instance, recent studies conducted by ALAOHALI ET AL. (2022) and ATILA ET AL. (2022) have evaluated the feasibility of incorporating GSK-3 inhibitors into hydrogels. The utilization of hydrogels as a delivery system for GSK-3 inhibitors offers notable advantages. Hydrogels can encapsulate therapeutic agents, enabling controlled release and localized drug delivery. Additionally, hydrogels can be tailored to exhibit desired physical properties, including viscosity and gelation characteristics, allowing for precise application and retention at
the target site. Consequently, the utilization of hydrogels as an alternative application form holds significant promise for facilitating the administration of GSK-3 inhibitors.

The findings of this laboratory study do not possess direct clinical relevance. Careful consideration must be given to the inherent methodological limitations of this study. First, the evaluation of possible discoloration resulting from the activation of the Wnt pathway can only be effectively assessed in vital teeth. Therefore, it is crucial that future studies investigating GSK-3 inhibitors in animal models monitor tooth color changes over time and provide comprehensive data on discoloration or lack thereof.

Second, it should be noted that contact between GSK-3 inhibitors and saliva or dentinal fluid could potentially lead to the formation of pigmented breakdown products, thus increasing the likelihood of discoloration. In the present study, the materials were applied under ideal laboratory conditions, without any fluid contamination. Consequently, it remains unclear whether the application of GSK-3 inhibitors carries inherent risks for tooth discoloration in clinical scenarios.

Third, the laboratory studies utilized bovine teeth specimens to assess the discoloration potential of GSK-3 inhibitors. The utilization of bovine teeth, which exhibit greater consistency in terms of shape and size compared to human teeth, served to reduce variability across specimens. However, while the microstructure of bovine dentin is similar to that of human dentin, notable differences exist in the shape and diameter of dentinal tubules. Additional studies employing human teeth are therefore necessary to enhance our understanding of the discoloration potential of GSK-3 inhibitors.

Owing to the absence of published studies investigating the discoloration potential of GSK-3 inhibitors, direct comparisons with existing research cannot be drawn. Nonetheless, this preliminary study offers valuable insights into the discoloration potential of GSK-3 inhibitors. Considering the significance of dental esthetics in oral
health-related quality of life, it is important to take into account the discoloration potential of direct and indirect capping materials alongside their therapeutic effects. To comprehensively assess the true extent of the discoloration potential of TG, further *in vitro* and *in vivo* studies are imperative.

**Conclusion**

Within the limitations of this laboratory study, the following conclusions were drawn:

- CHIR and TG, two GSK-3 inhibitors capable of promoting reparative dentin formation, differ in their potential for inducing tooth discoloration *in vitro*.
- Whereas CHIR produced significant changes in lightness and color, the color changes caused by TG remained below the threshold of visual perception.
- Additional research is necessary to advance our understanding of the discoloration potential associated with GSK-3 inhibitors.
Acknowledgments:

The authors extend their gratitude to Bell AG in Oensingen, Switzerland, for providing them the opportunity to extract bovine teeth. A special thanks goes to Dr. med. dent. Christian Dettwiler, M. Sc., for his continuous instrumental-technical assistance.
Zusammenfassung

Einleitung


Material und Methoden

Kochsalzlösung bei Raumtemperatur gelagert. Die spektrophotometrische Farbbestimmung wurde zu den Zeitpunkten \( t_0 \) (Vor Einlage), \( t_1 \) (unmittelbar nach Einlage), \( t_2 \) (nach einer Woche), \( t_3 \) (nach einem Monat), \( t_4 \) (nach drei Monaten), \( t_5 \) (nach sechs Monaten) und \( t_6 \) (nach einem Jahr) durchgeführt. Statistische Analysen, einschließlich deskriptiver Statistik, Kruskal-Wallis-Test, ANOVA und paarweiser Vergleiche, wurden durchgeführt, wobei das Signifikanzniveau bei \( \alpha = 0.05 \) festgelegt wurde.

**Resultate**

Die Ergebnisse der Studie zeigten signifikante Unterschiede in den Farbveränderungen zwischen den Versuchsgruppen während des einjährigen Beobachtungszeitraums. Die Gruppen RB und CHIR, die mit Rinderblut respektive mit CHIR-99021 behandelt wurden, wiesen die deutlichste Abnahme der Helligkeit (L*) vom Ausgangswert (\( L_{t0} \)) nach einem Jahr (\( L_{t6} \)) auf, was auf eine erhebliche Verfärbung hinweist (RB: \( \Delta L^* -4,7 \), CHIR: \( \Delta L^* -5,7 \)). Die Gruppen DMSO, TG und MTA wiesen minimale Veränderungen von L* auf (\( \Delta L^* \) innerhalb ±1,5), die jedoch statistisch nicht signifikant waren. Die relativen Farbveränderungen (\( \Delta E \)) nach einem Jahr waren bei den Gruppen RB und CHIR am höchsten, mit signifikanten Unterschieden im Vergleich zu den Gruppen DMSO, TG und MTA.

**Diskussion**

Die Ergebnisse zeigten, dass TG kein signifikantes Verfärbungspotenzial aufwies, während CHIR signifikante Helligkeits- und Farbveränderungen verursachte. Diese Farbveränderungen sind klinisch bedeutsam, da frühere Untersuchungen darauf hindeuten, dass Farbveränderungen, die einen \( \Delta E \)-Wert von 5,5 überschreiten, von Patienten wahrgenommen werden. Die begrenzte Verfügbarkeit von GSK-3-Inhibitoren in geeigneten Applikationsformen bleibt eine Herausforderung. Jüngste Untersuchungen haben jedoch alternative Formen erforscht, wie z. B. die Einbindung...
von GSK-3-Inhibitoren in Hydrogele, die Vorteile bei der kontrollierten Wirkstofffreisetzung und zielgenauen Applikation bieten. Diese Studie hat methodische Beschränkungen, daher ist es wichtig, weitere Untersuchungen an vitalen Zähnen durchzuführen und potenzielle Verfärbungsrisiken durch den Kontakt von GSK-3-Inhibitoren mit Speichel oder Dentinflüssigkeit zu bewerten. Trotz dieser Einschränkungen liefert die Studie wertvolle Erkenntnisse zum Verfärbungspotenzial von GSK-3-Inhibitoren. Erste Hinweise deuten darauf hin, dass TG möglicherweise günstigere Eigenschaften in Bezug auf das Verfärbungspotenzial aufweist als CHIR.

Résumé

Introduction
Les mesures de préservation de la vitalité lors du traitement de fractures dentaires et de lésions carieuses avancées ont pour objectif de préserver la vitalité de la pulpe. Les méthodes courantes de coiffage pulpaire indirect et direct comprennent l'utilisation de pâtes d'hydroxyde de calcium et de ciments silicatés hydrauliques. Les médiateurs de l'inflammation favorisent la formation réparatrice de la dentine en activant les voies de régénération tissulaire. Les inhibiteurs de la glycogène synthase kinase 3 (GSK-3), tels que le tidéglusib (TG) et le CHIR-99021 (CHIR), se sont révélés prometteurs pour stimuler la prolifération des cellules souches pulpaires et la formation de dentine réparatrice. Bien que le potentiel de coloration des matériaux de coiffage traditionnels soit connu, les connaissances scientifiques sur le potentiel de coloration des inhibiteurs de GSK-3 sont actuellement limitées. C'est pourquoi cette étude avait pour but d'évaluer le potentiel de coloration des inhibiteurs de GSK-3.

Matériels et méthodes
Dans cette étude, un dispositif in vitro bien établi a été utilisé pour évaluer le potentiel de décoloration des inhibiteurs de GSK-3. Au total, 75 échantillons ont été préparés à
partir d’incisives bovines, en produisant des échantillons rectangulaires d’émail et de
dentine avec des cavités standardisées. Les échantillons ont été soumis à un
processus de désinfection avec de l’hypochlorite de sodium et de l’acide
éthylènediaminetétracétique. Ils ont ensuite été répartis au hasard dans cinq groupes
expérimentaux : Contrôle positif (CP), diméthylsulfoxyde (DMSO), TG, CHIR et
agrégat de trioxyde minéral (MTA). Chaque groupe était composé de 15 échantillons.
Après l’introduction des matériaux respectifs dans les puits et la fermeture des puits
avec du composite de fixation, les échantillons ont été stockés dans des tubes à essai
contenant une solution saline à température ambiante. La détermination de la couleur
par spectrophotométrie a été effectuée à plusieurs moments sur une période d’un an.
Des analyses statistiques, y compris des statistiques descriptives, le test de Kruskal-
Wallis, l’ANOVA et des comparaisons par paires, ont été effectuées, le niveau de
signification étant fixé à α=0,05.

Résultats
Les résultats de l’étude ont montré des différences significatives dans les
changements de couleur entre les groupes expérimentaux au cours de la période
d’observation d’un an. Le groupe CP, traité avec du sang bovin, et groupe CHIR, traité
par CHIR-99021, a présenté la diminution la plus significative de la luminosité (L*) par
rapport à la valeur initiale (Lt0) après un an (Lt6), ce qui indique une décoloration
importante (CP : ∆L* -4,7. CHIR: ∆L* -5,7). Les groupes DMSO, TG et MTA ont
présenté des variations minimes de L* (∆L* à l’intérieur de ±1,5), mais qui n’étaient pas
statistiquement significatives. Les changements de couleur relatifs (ΔE) au bout d’un
an étaient les plus élevés pour les groupes CP et CHIR, avec des différences
significatives par rapport aux groupes DMSO, TG et MTA.

Discussion
Les résultats ont montré que la TG ne présentait pas de potentiel de décoloration significatif, tandis que la CHIR provoquait des changements significatifs de luminosité et de couleur. Ces changements de couleur sont cliniquement significatifs, car des études antérieures ont suggéré que les changements de couleur dépassant une valeur \( \Delta E \) de 5,5 sont perçus par les patients. La disponibilité limitée des inhibiteurs de GSK-3 dans des formes d'application appropriées reste un défi. Cependant, des études récentes ont exploré des formes alternatives, telles que l'incorporation d'inhibiteurs de GSK-3 dans des hydrogels, qui présentent des avantages en termes de libération contrôlée du principe actif et d'application ciblée. Cette étude présente des limites méthodologiques, il est donc important de réaliser d'autres études sur des dents vitales et d'évaluer les risques potentiels de décoloration liés au contact des inhibiteurs de GSK-3 avec la salive ou le liquide dentinaire. Malgré ces limites, l'étude fournit des informations précieuses sur le potentiel de coloration des inhibiteurs de GSK-3. Les premières indications suggèrent que la TG pourrait présenter des propriétés plus favorables que la CHIR en termes de potentiel de décoloration.

References


ATILA D, CHEN CY, LIN CP, LEE YL, HASIRCI V, TEZCANER A, LIN FH: In vitro evaluation of injectable tideglusib-loaded hyaluronic acid hydrogels incorporated with rg1-
loaded chitosan microspheres for vital pulp regeneration. Carbohydr Polym 278:118976 (2022)


### Tables

Tab. I Composition of the materials used in the different experimental groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Material</th>
<th>Composition/Details</th>
<th>Mixing information</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>Bovine blood</td>
<td>Positive control group</td>
<td>N/A</td>
<td>Bell Schweiz, Oensingen, Switzerland</td>
</tr>
<tr>
<td>DMSO</td>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
<td>N/A</td>
<td>Sigma-Aldrich/ Merck, Darmstadt, Germany</td>
</tr>
<tr>
<td>TG</td>
<td>Tideglusib</td>
<td>Concentration: 50nM</td>
<td>Tideglusib dissolved in DMSO/PBS*</td>
<td>Sigma-Aldrich/ Merck, Darmstadt, Germany</td>
</tr>
<tr>
<td>CHIR</td>
<td>CHIR99021</td>
<td>Concentration: 5μM</td>
<td>CHIR 99021 in DMSO/PBS* dissolved</td>
<td>Sigma-Aldrich/ Merck, Darmstadt, Germany</td>
</tr>
<tr>
<td>MTA</td>
<td>PD-MTA</td>
<td>Tricalcium silicate, Dicalcium silicate, Tricalcium aluminate, Calcium oxide, Calcium tungstate.</td>
<td>Full content of one sachet mixed with distilled water for 30 s to a creamy consistency</td>
<td>Produits Dentaires SA, Vevey, Switzerland</td>
</tr>
</tbody>
</table>

*PBS*: phosphate buffered saline (DMSO/PBS ratio = 0.2%v/v)

*PD-MTA*: Produits Dentaires Mineraltrioxidaggregat
Tab. II Mean values ± standard deviation (SD) and 95% confidence intervals (CI) of $L^*$, $a^*$ and $b^*$ values of the materials at baseline ($t_0$) and after one year ($t_6$) and the difference over this period ($\Delta L^*_{t_6-t_0}$; $\Delta a^*_{t_6-t_0}$; $\Delta b^*_{t_6-t_0}$; $\Delta E_{t_6-t_0}$)

<table>
<thead>
<tr>
<th>Group</th>
<th>$L^*$</th>
<th>$a^*$</th>
<th>$b^*$</th>
<th>$\Delta E$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t_0$</td>
<td>$t_6$</td>
<td>$t_0-t_6$</td>
<td>$t_0-t_6$</td>
</tr>
<tr>
<td>BB</td>
<td>Mean±SD</td>
<td>95% Cl</td>
<td>Mean±SD</td>
<td>95% Cl</td>
</tr>
<tr>
<td>86.1±0.8</td>
<td>84.4-87.8</td>
<td>81.4±0.7</td>
<td>80.0-82.8</td>
<td>-0.5±0.2</td>
</tr>
<tr>
<td>DMS</td>
<td>90.0±0.7</td>
<td>88.6-91.5</td>
<td>89.7±0.5</td>
<td>88.6-90.8</td>
</tr>
<tr>
<td>TG</td>
<td>90.7±0.4</td>
<td>89.9-91.5</td>
<td>92.1±0.4</td>
<td>91.2-92.9</td>
</tr>
<tr>
<td>CHIR</td>
<td>91.5±0.5</td>
<td>90.3-92.6</td>
<td>85.8±0.6</td>
<td>84.5-87.0</td>
</tr>
<tr>
<td>MTA</td>
<td>91.5±0.4</td>
<td>90.7-92.4</td>
<td>91.0±0.4</td>
<td>90.1-92.0</td>
</tr>
</tbody>
</table>
BB: control group blood, DMSO: group DMSO, TG: group Tideglusib, CHIR: group CHIR99021, MTA: PD-MTA, $L^*$: lightness, $a^*$: red-green coordinates, $b^*$: blue-yellow coordinates, $\Delta E$: relative color change. *$p < 0.05$ denotes a significant difference when compared with control group BB. **$p < 0.001$ indicates a highly significant difference when compared with control group BB.