Influence of different loupe systems and their light source on the vision in endodontics

SUMMARY
The aim of this study was to evaluate the performance of Galilean and Keplerian loupes in the endodontic lumen with and without integrated light. Although the use of an operating microscope is widely recommended in endodontics it is uncertain whether an adequate loupe system with coaxial light source might replace the microscope for some endodontic work. Twenty-four dentists (age 27–64 years) underwent a miniaturized visual test inside the endodontic lumen of a natural molar: at the canal entrance, 5 mm inside the canal, and at the apex. The tooth was mounted in a phantom head in a simulated clinical setting. The naked eye (negative) and the microscope 6× (positive) served as control groups, and Galilean loupes 2.5× and Keplerian loupes 4.3× with and without a coaxial light source as experimental groups. A structure of 0.05 mm corresponding to the smallest instrument (06) was the threshold for sufficient vision. The loupe type, coaxial light source and the dentists’ age had a statistically significant influence at all locations. None of the loupes helped to visualize structures at the apex. At the canal entrance, the visual threshold was reached by dentists <40 years with Galilean loupes, by dentists ≥40 years with Keplerian loupes, with and without coaxial light. Dentists <40 years detected structures <0.05 mm inside the root canal with Keplerian loupes and coaxial light. The microscope offered highly superior results. The naked eye was insufficient to reach the visual threshold at any location.

KEYWORDS
Dental loupes
Endodontology
Galilean loupes
Keplerian loupes
Microscope

PHILIPPE PERRIN
KLAUS W. NEUHAUS
 MARTINA EICHENBERGER
ADRIAN LUSSI

1 Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland
2 Department of Periodontology, Endodontology, and Cariology, University Center for Dental Medicine, University of Basel, Switzerland
3 Private practice, Schulstrasse 7, CH–5507 Mellingen, Switzerland

CORRESPONDENCE
Dr. Philippe Perrin
Klinik für Zahnerhaltung, Präventiv- und Kinderzahnmedizin
Zahnmedizinische Kliniken der Universität Bern
Freiburgstrasse 7
CH–3010 Bern
Tel. +41 31 632 25 70
Fax +41 31 632 98 75
E-mail: philippe.perrin@zmk.unibe.ch

Accepted for publication: 1 February 2019
Introduction
For decades, endodontic treatments were performed in the dark, guided by radiographs, anatomic knowledge, tactile sense and experience (Dahlström et al. 2016). The introduction of the operating microscope in dentistry (Selden 1989; Carr 1992) allowed for new approaches to endodontic procedures, such as the detection of small orifices, the diagnosis of vertical root fractures, the repair of deep perforations and the elimination of obstacles inside the root canal (Ruddle 1994; Velvart 1996; Baldassari-Cruz & Wilcox 1999; de Carvalho & Zuolo 2000; Baldassari-Cruz et al. 2002; Schwarze et al. 2002). The operating microscope has become widely accepted as part of an endodontist’s equipment despite a lack of proof that its use per se enhances the clinical prognosis of endodontic treatments (Del Fabbro et al. 2015).

A recent study compared the performance of the naked eye with that using a dental loupe system and an operating microscope with miniaturized visual tests inside the endodontic lumen of a natural tooth (Perrin et al. 2014a). In this clinical simulation, the naked eye was unable to detect the dimension of the finest endodontic instrument (0.06 mm) at any location of the endodontic lumen while Galilean loupes with a coaxial light source allowed young dentists aged <40 years to detect this dimension at the canal entrance. This was not the case for older dentists or for other locations inside the root canal system. The microscope with 6× magnification offered highly superior vision inside the tooth, which was influenced neither by the location nor by the dentists’ age.

In the above-mentioned study of Perrin et al. (2014a) Galilean loupes 2.5× were used with a coaxial light source as typically used in dentistry (Eichenberger et al. 2015; Perrin et al. 2014b). The question if Keplerian (prismatic) loupes with their higher magnification could reach the postulated threshold for an adequate endodontic treatment was not answered. Neither analyzed was the impact of the coaxial light source on the visual performance inside the endodontic lumen. The aim of the present follow-up study was to evaluate the performance of Galilean and Keplerian loupes in the endodontic lumen with and without coaxial light source.

Materials and methods
The intra-radicular visual tests
The setup of the visual tests was described in detail in an earlier publication (Perrin et al. 2014a). Miniaturized visual tests on the base of microfilms were fixed inside the endodontic lumen of a natural first molar (FDI 26) as shown in Figs. 1 and 2. The three main canals had been shaped to an apical diameter of 0.6 mm to gain enough space for the visual test charts. A phantom head with the prepared tooth 26 was positioned on a dental chair and fitted with a dental rubber dam to simulate a clinical setting.

The eye charts with E-optotypes were validated for dental purposes by Eichenberger et al. (2011). To define the direction of the optotype it is necessary to see the spaces between the three bars of the E. The dimension of this space is therefore the measured value of the test and is equal to 1/5 of the external dimension of the E-optotype. The range of the bar distance was at the canal entrance between 0.02 mm and 0.05 mm and inside the canals between 0.01 mm and 0.025 mm. To obtain a positive correlation between the smallest detected structure and the visual performance, the metric dimension (e.g. 0.05 mm) was converted into the reciprocal value (e.g. 20 mm⁻¹).

Participants and optical test conditions
The visual tests were performed with the test group of Perrin et al. 2014a (24 dentists, mean age 40 years, median age 35 years, range 27–64 years). The participating dentists were faculty members or private practitioners related to the faculty. Inclusion criteria were the habitual use of loupes and microscope and a confirmed near visual acuity in the range of former studies (Eichenberger et al. 2011; Perrin et al. 2017). All participants performed a respective near visual test and could be included in the study.

The visual tests were performed under the following experimental conditions:
- G: Galilean loupe, 2.5× magnification, 380 mm working distance (EVC250N, SurgiTel, Ann Arbor, MI, USA) with self-adjusted operating lamp (Delight, Planmeca OY, Helsinki, Finland)
- GL: as for G, with coaxial LED light source (HighLight, DCI, Kiel, Germany), results transferred from Perrin et al. 2014a
The following conditions and results from Perrin et al. 2014a served as positive (M) and negative (NV) control group:
- NV: Natural vision, correction glasses if necessary, freely chosen working distance with self-adjusted operating lamp (as above)
- M: Operating microscope Leica M300, integrated light source Leica CLS150MR, magnification 6× (Leica Microsystems, Heerbrugg, Switzerland)

All test subjects were familiar with the use of loupes and microscopes. Individuals who needed glasses for correction of visual deficiencies had to wear them during the tests. The possible influence of the dentists’ age was evaluated by comparing two groups, <40 years (n = 9) and ≥40 years (n = 15), according to Eichenberger et al. (2011).

The threshold for an acceptable visual performance was defined as 0.05 mm or 20 mm\(^{-1}\) based on the dimension of the finest available endodontic file (ISO 06), which has a tip of 0.06 mm (Perrin et al. 2014a).

Statistical analysis
All analyses were performed with Software R, Version 2.12.1 using the additional packages exactRankTests and nparLD (R-project, Institute for Statistics and Mathematics, University of Vienna, Vienna, Austria). To test the global influence of the location, the optical conditions and the dentists’ age, a non-parametric ANOVA model for repeated measurements (i.e. F1, LD, F2 model from Brunner et al. 2002) was applied. Post-hoc tests were done with exact one-sided Wilcoxon Signed Rank Tests using Holm’s correction method (Holm 1979).

Results
The results of the experimental groups were with one exception in the range of the visual test charts. The apical test with Galilean loupes had to be excluded due to the fact that none of the test persons could recognize any chart line.

The triple interaction “optical aid used; age of the examiner; location of the test inside the root canal” was statistically significant (p = 0.04), indicating that all three parameters had a significant influence on dentists’ visual acuity in the root canal system. Keplerian loupes with coaxial light had a significantly higher median outcome than Galilean loupes with coaxial light at all locations. Use of a coaxial light source increased significantly the median outcome in all locations for both loupes types (p in all tests < 0.01).

The effect of the loupe type and the coaxial light source at the different locations is shown as a boxplot in Fig. 3. While natural vision could not reach the threshold of 0.05 mm at any location the microscope 6× showed highly superior results than all other conditions. The effect of a coaxial light source was strong positive at the location 5 mm inside the canal and weak positive at the canal entrance and the apex.

The results for the two age groups (</≥ 40 years) are shown as boxplots in Figs. 4 and 5. A statistically significant difference between the age groups was found for Galilean loupes with and without a coaxial light source at the canal entrance.

Fig. 3 Visual performance of the 24 test persons at the canal entrance (mb), 5 mm inside the canal (db) and at the apex (p). Natural vision (NV), Galilean loupes 2.5× (G) with coaxial light (GL), Keplerian loupes 4.3× (K) with coaxial light (KL) and microscope 6× (M). The red line marks the threshold of 20 mm\(^{-1}\) corresponding to 0.05 mm or the tip of the smallest endodontic instrument. Note the superior performance of Kepler loupes versus Galilean loupes at all locations and the strong effect of a coaxial light source at position db inside the canal. Natural vision could not reach the threshold of 20 mm\(^{-1}\) at any location.
For Keplerian loupes and for the other locations, no significant differences between the age groups were seen.

The threshold value of 20 mm⁻¹ (0.05 mm) was reached at the canal entrance by the younger group (<40 years) with Galilean loupes and by the older group (≥40 years) with Keplerian loupes independent of the light source. Some dentists in the younger group reached the threshold inside the canal when using Keplerian loupes and coaxial light at 5 mm (distobuccal).

For all other conditions inside the canal, the threshold could not be reached with loupes.

Discussion

Galilean and Keplerian loupes are the main two loupes systems used in dentistry (Figs. 6 and 7) (Perrin et al. 2016). Galilean loupes are the most popular due to their light weight, but their magnification factor is limited to 2.5× by physical constraints. Keplerian loupes are sophisticated optical systems with an open

Fig. 4 Visual performance of the group <40 years at the canal entrance (mb), 5 mm inside the canal (db) and at the apex (p). Natural vision (NV), Galilean loupes 2.5× (G) with coaxial light (GL), Keplerian loupes 4.3× (K) with coaxial light (KL) and microscope 6.4× (M). The horizontal line over the grey area marks the borderline value for a sufficient visual acuity. The younger dentists could reach the threshold at mb when using G or GL and, partly, inside the canal db when using KL. Natural vision was insufficient at all locations.

Fig. 5 Visual performance of the group ≥40 years at the canal entrance (mb), 5 mm inside the canal (db) and at the apex (p). Natural vision (NV), Galilean loupes 2.5× (G) with coaxial light (GL), Keplerian loupes 4.3× (K) with coaxial light (KL) and microscope 6.4× (M). The horizontal line over the grey area marks the borderline value for a sufficient visual acuity. The older dentists could reach the threshold at mb when using K or KL while NV, G and GL were insufficient at all locations. Notice the unimpaired visual acuity with the microscope at all locations.
magnification factor. This factor, however, is generally limited to between 3.5× and 4.5× for ergonomic reasons. Keplerian loupes are less popular with dentists owing to their heavier weight, but recent studies have revealed their highly superior visual performance compared to Galilean loupes (Eichenberger et al. 2011, 2013, 2015; Perrin et al. 2014b, 2016). Remarkably, in a recent questionnaire, 74% of Swiss hand surgeons could not explain the difference between Galilean and Keplerian loupes systems (Perrin et al. 2016). It would be worthwhile to find out whether dentists are better informed.

Most of the results from the experimental groups were within the range of the visual tests indicating that the dimension of the respective E-optotypes was adequate. At the canal entrance (mb) we used bigger test charts than inside the canals to include an evaluation of unaided vision and of loupes with a low magnification. Nevertheless, we overestimated the visual performance of the participants since we found a clustering out of the range of the bar distances in the visual tests. We solved this problem by including an additional value for test subjects who could detect the E-optotype as a structure but could not identify its direction. Additional chart lines with taller optotypes could solve this problem for future studies. However, the dimension of the test chart will be limited by the narrow space inside the endodontic cavity. The preparation of the palatal canal until ISO #60 straightened the natural curvature enough to allow a direct vision on the apical test chart. The threshold of 20 mm⁻¹ (0.05 mm) for sufficient visual acuity inside the endodontic lumen can be considered as plausible. The smallest available instruments to pass through a calcified entrance or to fracture inside a canal have a tip of 0.06 mm. For properly performed endodontic treatments this dimension should be detectable.

The influence of the optical aid, the coaxial illumination and the dentists’ age on visual performance in the endodontic lumen was highly significant for all three factors.

One would expect that Keplerian loupes, with their higher magnification factor, would be superior to Galilean loupes and this was found to be true for all test locations. The influence of a coaxial light source on the dentists’ visual performance was highly significant for both loupes systems at all locations. This can be explained by the narrow shape of the endodontic lumen. The question if the light source has an impact on the required dimension of the access cavity could be a topic of further research. As mentioned above, the apical test with Galilean loupes had to be excluded due to multiple zero results. The results of this study indicate that discrimination between Galilean and Keplerian loupes is important in a clinical context and with respect to the dentists’ age.

The results confirm that the operating microscope is the superior option for excellent vision at all endodontic locations. However, Keplerian loupes, particularly when equipped with a coaxial light source, might replace the microscope for endodontic treatments inside the pulp chamber. For young dentists (< 40 years) this is also true for the coronal part of the root canal. This statement is based on the objective visual tests conducted in this study and on the proposed visual threshold. Further clinical research would be necessary to verify this finding.

Acknowledgments
The authors declare that they have no involvement or commercial interest in the commercial organizations mentioned. The authors wish to thank Jasmin Wandel and Lukas Martig for the statistical analysis and Anne Seeger, Ines Badertscher and Bernadette Rawyler for the graphics in Figs. 1, 6 and 7.

Zusammenfassung
Einleitung

Material und Methode

Bei 24 Zahnärzten (Alter Mittelwert 40, Median 35, Bereich 27–64 Jahre) wurde mit E-Optotypen-Sehtests innerhalb des Pulpacavums eines extrahierten Molars (Zahn 26) die Detailerkennung gemessen mit (I) Galilei-Lupe 2,5× und (II) Kepler-Lupe 4,3×, je mit und ohne integrierte Lichtquelle. Als positive beziehungsweise negative Referenz galten die Werte, die in der Studie von PERRIN ET AL. (2014) für das Operationsmikroskop (6×) und für das Sehen mit blossem Auge ermittelt wurden. Drei miniaturisierte Sehtests wurden am Wurzelkanal eingang, 5 mm vom Wurzelkanaleingang entfernt sowie am Apex platziert. Die Messungen wurden unter simulierten klinischen Bedingungen durchgeführt. Als Grenzwert für eine genügende Sicht galt das Erkennen einer Struktur ≤0,5 mm, was der Dimension des kleinsten verfügbaren Endo-Instrumentes (ISO 0,06) entspricht. Analysiert wurde der Einfluss des Alters (< versus ≥ 40 Jahre), des Lupentyps (Galilei versus Kepler) sowie der Lichtquelle (OP-Lampe versus integrierte Lichtquelle) auf die Detailerkennung.

Resultate

Diskussion

40 ans lorsqu’ils portaient des loupes de Kepler avec une lumière coaxiale. La limite du 0,05 mm n’a presque jamais été discriminée à l’œil nu. Au contraire, le microscope opéra-
toire l’a permis dans tous les cas. Et cela indépendam-
ment de l’âge du sujet ainsi que de la localisation du test.

Discussion
Cette étude montre l’importance de différencier les populaires loupes de Galilée des loupes de Kepler au plus fort grossisse-
ment. Pour les actes à l’intérieur de la chambre pulpaire, il
semble que les loupes prismatiques avec lumière coaxiale
pourraient partiellement remplacer un microscope opéra-
toire lorsque celui-ci est inaccessible. À l’aide de celles-ci, les sujets de moins de 40 ans étaient capables de distinguer les structures limites se situant à l’intérieur de la partie coronale du canal. En revanche, les courantes loupes de Galilée 2,5× sont largement insuffisantes pour une utilisation en endodontologie, même lors d’utilisation d’une source de lumière coaxiale. Indépen-
dament de l’âge du sujet, le microscope opératoire reste le
premier choix pour visualiser les canaux radiculaires.

References

Brunner E, Domhof S, Langer F: Nonparametric Analysis of Longitudinal Data in Factorial Ex-
Dahlström L, Lindwall H, Rystedt H, Reith C: “Working in the dark”: Swedish general practi-
tioners on the complexity of root canal treat-
Del Fabbro M, Taschieri S, Lotti G, Banfi G, Wein-
Eichenberger M, Perrin P, Neuhaus K W, Bringolf U, Lussi A: Visual acuity of dentists under simulat-
Perrin P, Neuhaus K W, Lussi A: The impact of loupes and microscopes on vision in endodon-
Perrin P, Ramseyer S T, Eichenberger M, Lussi A: Visual acuity of dentists in their respective clini-
doi.org/10.1016/j.jhsa.2015.12.033 (2016)
Schwarze T, Baethge C, Stecher T, Geurtsen W: Identification of second canals in the mesio-
buccal root of maxillary first and second molars using magnifying loupes or an operating micro-
Selden H S: The role of a dental operating micro-
Velvart P: The operating microscope. New dimen-