The anterior superior alveolar nerve (ASAN) is a branch of the infraorbital nerve. Only few studies have morphometrically evaluated the course of the ASAN. Midfacial segments of ten hemisected fresh adult cadaver heads were dissected to uncover the anterior wall of the maxillary sinus. Specimens were subsequently decalcified and the bone overlying the ASAN was removed under a microscope to expose the ASAN. Its branching pattern from the infraorbital nerve was recorded, and the course of the ASAN within the anterior wall of the maxillary sinus was morphometrically assessed measuring distances to predefined landmarks using a digital caliper. A distinct ASAN was observed in all specimens. It arose lateral (six cases) or inferior (four cases) from the infraorbital nerve. The point of origin was located at a mean distance of 12.2 ± 5.79 mm posterior to the infraorbital foramen. The ASAN was located on average 2.8 ± 5.13 mm lateral to the infraorbital foramen. After coursing medially, the ASAN ran inferior to the foramen at a mean distance of 5.5 ± 3.07 mm. When approaching the nasal aperture, the loop of the ASAN was on average 13.6 ± 3.07 mm above the nasal floor. The horizontal mean distance from the ASAN to the nasal aperture was 4.3 ± 2.74 mm halfway down from the loop, and 3.3 ± 2.60 mm at the floor of the nose, respectively. In conclusion, the present study evaluated the course of the ASAN relative to the infraorbital foramen and nasal aperture. This information is helpful to avoid damage to this anatomical structure during interventions in the infraorbital region of the maxilla. Further, knowledge of the course of the ASAN and of its bony correlate (canalis sinuosus) may be valuable in interpreting anesthetic or radiologic findings in the anterior maxilla.

Anterior superior alveolar nerve (ASAN)

A morphometric-anatomical analysis

KEYWORDS
anterior superior alveolar nerve, morphology, morphometry, anatomy

SUMMARY
The anterior superior alveolar nerve (ASAN) is a branch of the infraorbital nerve. Only few studies have morphometrically evaluated the course of the ASAN. Midfacial segments of ten hemisected fresh adult cadaver heads were dissected to uncover the anterior wall of the maxilla. Specimens were subsequently decalcified and the bone overlying the ASAN was removed under a microscope to expose the ASAN. Its branching pattern from the infraorbital nerve was recorded, and the course of the ASAN within the anterior wall of the maxillary sinus was morphometrically assessed measuring distances to predefined landmarks using a digital caliper. A distinct ASAN was observed in all specimens. It arose lateral (six cases) or inferior (four cases) from the infraorbital nerve. The point of origin was located at a mean distance of 12.2 ± 5.79 mm posterior to the infraorbital foramen. The ASAN was located on average 2.8 ± 5.13 mm lateral to the infraorbital foramen. After coursing medially, the ASAN ran inferior to the foramen at a mean distance of 5.5 ± 3.07 mm. When approaching the nasal aperture, the loop of the ASAN was on average 13.6 ± 3.07 mm above the nasal floor. The horizontal mean distance from the ASAN to the nasal aperture was 4.3 ± 2.74 mm halfway down from the loop, and 3.3 ± 2.60 mm at the floor of the nose, respectively. In conclusion, the present study evaluated the course of the ASAN relative to the infraorbital foramen and nasal aperture. This information is helpful to avoid damage to this anatomical structure during interventions in the infraorbital region of the maxilla. Further, knowledge of the course of the ASAN and of its bony correlate (canalis sinuosus) may be valuable in interpreting anesthetic or radiologic findings in the anterior maxilla.
Introduction
The anterior superior alveolar nerve (ASAN) is a branch of the infraorbital nerve traditionally considered to contribute to the superior dental plexus together with the middle and posterior superior alveolar nerves. The ASAN is usually much thicker than the middle and posterior superior alveolar nerves, and traverses the anterior wall of the maxilla in a distinct bone canal, the so-called canalis sinuosus. The ASAN may consist of one to two trunks with a single branch or multiple branches (ROBINSON & WORMALD 2005). Others have described the ASAN being made up of two to three fascicles (MURAKAMI ET AL. 1994). The ASAN is usually accompanied by a small artery, the anterior superior alveolar artery. The course of the ASAN and the artery is of interest to dentists, to oral and maxillofacial surgeons, as well as to oto-rhino-laryngologists who all perform interventions and surgeries in the distribution area of these neurovascular structures.

The course of the ASAN and its bony canal (canalis sinuosus, Fig. 1) were first described by WOOD–JONES (1939). The canal, also termed sinusus canaliculus or anterior superior alveolar canal (SONG ET AL. 2012), originates from the infraorbital canal posterior to the infraorbital foramen and courses in an antero-lateral direction. After reaching the anterior wall of the maxilla, the canalis sinuosus turns medial to run below the infraorbital foramen crossing the antrum wall from lateral to medial. Once the canal reaches the nasal aperture, it loops inferiorly and descends along the piriform opening. The course of the ASAN as well as the accompanying vascular elements are inexorably bound to the canalis sinuosus. Yet little quantitative information concerning the course of the ASAN within the anterior wall of the maxilla is available.

The objective of the present study was to analyze and measure the trajectory of the ASAN within the anterior maxilla. The information presented here will provide greater clinical resolution concerning the location and route of the ASAN necessary for successful surgical interventions.

Materials and methods
The study was performed in ten midface segments of five cadaver heads. All procedures followed institutional guidelines of the Willed Body Program, University of Hawaii School of Medicine (LABRASH & LOZANOFF 2007). The freshly frozen cadaver heads were sectioned vertically at the anatomical midline using a bandsaw. Hemifaces were sectioned horizontally at the level of the occlusal plane and slightly above the infraorbital rim to provide midface segments. After thawing, the specimens were dissected to expose the nasal aperture, the anterior and lateral walls of the maxilla, and the orbital floor. All soft tissues covering the mentioned bone surfaces were carefully removed and the infraorbital neurovascular bundle was sectioned at the level of the infraorbital foramen. For decalcification the dissected midface specimens were put in a special solution (R.B.D. Rapid Bone Decalcifier, American MasterTech, Lodi, CA, USA) for 16 hours at room temperature. After decalcification, the specimens were thoroughly washed with tap water. The softened bone covering the ASAN was carefully removed under a microscope to visualize and measure the course of the nerve. The following morphological details were assessed: origin of ASAN relative to infraorbital nerve; and, number of trunks, fascicles and branches of ASAN. The course of the ASAN was measured relative to adjacent landmarks (infraorbital foramen, nasal aperture) including two reference lines (line A = horizontal line through upper margin of infraorbital foramen; line B = horizontal line through lower border of nasal aperture) (Tab. I and II).

<table>
<thead>
<tr>
<th>Tab. I</th>
<th>Explanation of abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviation</td>
<td>Anatomical correlate</td>
</tr>
<tr>
<td>AC</td>
<td>Accessory bone canal in anterior maxilla</td>
</tr>
<tr>
<td>AN</td>
<td>Anastomosis between ASAN and PSAN</td>
</tr>
<tr>
<td>ASAN</td>
<td>Anterior superior alveolar nerve</td>
</tr>
<tr>
<td>ASAA</td>
<td>Anterior superior alveolar artery</td>
</tr>
<tr>
<td>AWM</td>
<td>Anterior wall of maxilla</td>
</tr>
<tr>
<td>CS</td>
<td>Canalis sinusosus</td>
</tr>
<tr>
<td>IOA</td>
<td>Infraorbital artery</td>
</tr>
<tr>
<td>IOC</td>
<td>Infraorbital canal</td>
</tr>
<tr>
<td>IOF</td>
<td>Infraorbital foramen</td>
</tr>
<tr>
<td>ION</td>
<td>Infraorbital nerve</td>
</tr>
<tr>
<td>IOR</td>
<td>Infraorbital rim</td>
</tr>
<tr>
<td>MSAN</td>
<td>Middle superior alveolar nerve</td>
</tr>
<tr>
<td>NA</td>
<td>Nasal aperture</td>
</tr>
<tr>
<td>OF</td>
<td>Orbital floor</td>
</tr>
<tr>
<td>PSAN</td>
<td>Posterior superior alveolar nerve</td>
</tr>
</tbody>
</table>

Fig. 1 Reformatted (oblique) CBCT plane through right midface/anterior maxilla of a 62-year-old male showing CS and AC.
Fig. 2). All measurements were taken with a digital caliper to the nearest .01 mm (Tresna®, Tresna Instruments, Guilin, China).

Results
Morphological findings
The ASAN could be identified in all dissected hemifaces. In all cases, it was accompanied below the orbital floor by a small artery originating from the infraorbital artery (Fig. 3). In six specimens the ASAN bifurcated laterally and in four specimens inferiorly from the infraorbital nerve (Fig. 4). All evaluated ASANs consisted of a single trunk comprising between two and four fascicles (four specimens had two fascicles, five specimens had three fascicles and one specimen presented with four fascicles). On the ventral side of the maxillary sinus, the ASAN either continued as a single branch (four specimens) or divided into two branches (four specimens), or into three branches (two specimens), respectively. The pattern with one branch curving along the nasal aperture downward to the nasal floor was found in all specimens (Fig. 5). Occasionally, an additional branch curved upward lateral to the piriform aperture, or ran inferiorly from the main trunk shortly after passing below the infraorbital foramen to join the middle or posterior superior alveolar nerves (Fig. 6). A consistent finding was an anastomosis between the anterior and posterior superior alveolar arteries (Fig. 7).

<table>
<thead>
<tr>
<th># see Fig. 2</th>
<th>Distance</th>
<th>Mean ± standard deviation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Antero-posterior distance from origin of ASAN to IOF</td>
<td>12.2 ± 5.79</td>
<td>3.04 – 19.03</td>
</tr>
<tr>
<td>2</td>
<td>Horizontal distance from ASAN to NA at level of line A</td>
<td>24.7 ± 6.56</td>
<td>16.68 – 36.60</td>
</tr>
<tr>
<td>3</td>
<td>Horizontal distance from ASAN to lateral margin of IOF</td>
<td>2.8 ± 1.53</td>
<td>-4.17* – 9.33**</td>
</tr>
<tr>
<td>4</td>
<td>Horizontal distance (width) of IOF</td>
<td>3.9 ± 0.40</td>
<td>3.14 – 4.62</td>
</tr>
<tr>
<td>5</td>
<td>Horizontal distance from medial margin of IOF to NA</td>
<td>17.0 ± 3.91</td>
<td>10.71 – 25.43</td>
</tr>
<tr>
<td>6</td>
<td>Vertical distance from line A to ASAN</td>
<td>5.5 ± 3.07</td>
<td>0.96 – 9.97</td>
</tr>
<tr>
<td>7</td>
<td>Vertical distance from line A to ASAN at midpoint between IOF and NA</td>
<td>8.7 ± 2.98</td>
<td>4.92 – 11.67</td>
</tr>
<tr>
<td>8</td>
<td>Vertical distance from line A to line B</td>
<td>23.0 ± 4.62</td>
<td>16.15 – 29.60</td>
</tr>
<tr>
<td>9</td>
<td>Horizontal distance from ASAN to NA at halfway of distance #8</td>
<td>5.8 ± 1.96</td>
<td>3.17 – 9.29</td>
</tr>
<tr>
<td>10</td>
<td>Vertical distance from loop of ASAN to line B</td>
<td>13.6 ± 3.07</td>
<td>8.16 – 17.36</td>
</tr>
<tr>
<td>11</td>
<td>Horizontal distance from ASAN to NA at halfway of distance #10</td>
<td>4.3 ± 2.74</td>
<td>0.06 – 10.03</td>
</tr>
<tr>
<td>12</td>
<td>Horizontal distance from ASAN to NA at level of line B</td>
<td>3.3 ± 2.60</td>
<td>0.52 – 9.65</td>
</tr>
</tbody>
</table>

* negative value = ASAN positioned medial to lateral margin of IOF
** positive value = ASAN positioned lateral to lateral margin of IOF
Morphometric findings (Tab. 1)
The ASAN originated from the infraorbital nerve at a mean distance of 12.2 ± 5.79 mm posterior to the infraorbital foramen. Subsequently, the ASAN reached the anterior wall of the maxilla at a mean distance of 2.8 ± 5.13 mm lateral to the infraorbital foramen. However, this distance was largely dependent on the origin of the ASAN relative to the infraorbital nerve. Further along its course, the ASAN was located at a mean distance of 5.5 ± 3.07 mm below the infraorbital foramen. The loop of the ASAN approaching the nasal aperture was located at a mean distance of 13.6 ± 3.07 mm above the nasal floor. With regard to its downward course along the piriform opening, the ASAN was located at a mean distance of 4.3 ± 2.74 mm (midway between the loop and the nasal floor), and of 3.3 ± 2.60 mm (at the level
of the nasal floor), respectively, from the lateral border of the nasal aperture.

Discussion
The present cadaver study has morphologically and morphometrically assessed the ASAN and contributes to the limited information with regard to the anatomical variation of this anatomical structure. To our knowledge, this is the first study that has measured the trajectory of the ASAN relative to the infraorbital foramen and the lateral border of the nasal aperture. Those anatomical structures are easily discerned preoperatively on radiographs and are also readily visible during surgery.

Origin of ASAN
Though Heasman (1984) measured the distance between the origin of the ASAN and the infraorbital foramen he did not provide data regarding mean, minimum and maximum values for that distance. He only reported that in six specimens the distance was < 5 mm, in four specimens 5–10 mm, in five specimens 10–20 mm, and in another four specimens > 20 mm. In the present study, that distance ranged between 3.0 and 19.0 mm, but never exceeded 20 mm. A dual origin of the ASAN was never observed in the present study, but has been reported earlier (Heasman 1984, Song et al. 2012).

Morphology of ASAN
Previous observations that the diameter of the ASAN was consistently between one-half and one-third that of the infraorbital nerve and was a broader structure than either the middle or posterior superior alveolar nerves (Heasman 1984) could be visually corroborated in the present study.

Course and branching pattern of ASAN
Branching of the ASAN as observed in the present study is a common finding. Heasman (1984) described division of the ASAN into two branches in 10.5% (2/19) with the upper branch continuing to the narial margin and the lower branch joining the posterior superior alveolar nerve. In further 31.6% (6/19) the ASAN gave rise to fine branches descending and looping infero-posteriorly that finally communicated with terminal fibers of the posterior and middle superior alveolar nerves. Murakami et al. (1994) reported that the ASAN, two to three in number, arose from the infraorbital nerve after its exit from the infraorbital foramen (Heasman 1984). The ASAN then divided into numerous twigs that formed the anterior part of the superior dental plexus. Robinson & Wormald (2005) described five discrete patterns to the course of the ASAN and its branches. The most common pattern was a single trunk with no branches (30%) followed by a multiple-branch pattern from a single trunk (25%). The authors observed a double trunk in 25%. In 35% of their cases, the branches of ASAN overlying the canine fossa formed a diffuse plexus. While in the present study the ASAN always presented as a single trunk, it consisted of multiple fascicles but without spacious separation.

Encasement of ASAN
In their study of 40 hemimaxillae, Robinson & Wormald (2005) identified a dehiscent ASAN in 12.5%, while the remaining 87.5% were encased in thin bone. In the present study, all ASAN were encased in thin, and occasionally very fragile, bone as they traversed the anterior wall of the maxilla. Following decalcification, the thin bone overlying the ASAN could be easily removed with tweezers.

Distance of ASAN to infraorbital foramen
Heasman (1984) reported that the vertical distance between the inferior margin of the infraorbital foramen and the ASAN varied between 2 and 9 mm (no mean value and standard deviation were provided). In the present study, this distance (measured from the superior rather than from the inferior margin of the infraorbital foramen) ranged from 0.96 to 9.97 mm, with a mean value of 5.5 ± 3.07 mm.

Course of ASAN relative to infraorbital foramen
In a cadaver study of 20 heads, Robinson & Wormald (2005) found that the ASAN emerged from its canal lateral (42.5%) and central (also 42.5%) to the infraorbital foramen, but only in 15% medial to the infraorbital foramen. In the present study, the ASAN never appeared medial to the infraorbital foramen – it emerged in 60% laterally and in 40% inferiorly to the infraorbital foramen. In a microcomputed tomography study of 28 cadaver hemimaxillae, 57.5% of ASAN canals originated laterally from the infraorbital canal, 37.5% inferiorly and only 5% medially (Song et al. 2012).

Course of ASAN relative to nasal aperture
The horizontal distance of the canalis sinuosus relative to the piriform aperture was assessed in 14 Korean hemi-arches following decalcification and sectioning on three levels (Hwang et al. 2011). Histology was also performed with the canalis sinuosus containing well-defined arteries and nerves. The obtained horizontal measurements were shorter than in the present study, 0.8 mm at the bottom of the nasal aperture, 1.8 mm at a quarter and 2.6 mm at halfway of the maximum height of the nasal aperture. However, the values reported by Hwang et al. (2011) do not represent the true distance to the nasal aperture since they were taken from a reference line through the most lateral border of the nasal aperture. The safety distance of 2–3 mm stated by the authors might be too narrow to avoid the neurovascular structure along the lower half of the piriform aperture considering the mean distances measured in the present study (3.3–5.8 mm).

Clinical implications
The course of the ASAN within the infraorbital region and the anterior wall of the maxillary sinus poses for a certain risk of neurologic disorders following surgical interventions or trauma in that part of the midface. Several studies have reported changes in postoperative somatosensory function in the anterior maxilla after Le Fort I osteotomies (Rosenberg & Sailer 1994, Al-Din et al. 1996, Ueki et al. 2008). A study including 25 patients followed for one year reported significant sensitivity changes of the upper lip, gingiva, and teeth following Le Fort I osteotomy. Somatosensory disturbances were present in up to 64% of the evaluated patients (Thygesen et al. 2009).

Further, the ASAN may be damaged during canine fossa puncture or antrostomy (Robinson & Wormald 2005). The same authors have suggested using the bisection of a mid-pupillary line and a line through the floor of the nasal vestibule as the landmark to avoid damage to the major branches of the ASAN during canine fossa puncture. Using those described landmarks the frequency of adverse events in conjunction with canine fossa puncture could be reduced from 76% to 45%, and the number of patients complaining of persistent symptoms (facial numbness, facial tingling) was reduced from 29% to 5% (Robinson et al. 2005, Singhal et al. 2007). The same group of
authors have further demonstrated that transillumination of the maxillary sinus allows for accurate identification of the main trunk of the ASAN during canine fossa puncture (TAN ET AL. 2009).

Recent CBCT-based research has demonstrated bone channels in the anterior maxilla communicating with the canalis sinuosus (TEMMERMAN ET AL. 2011, DE OLIVEIRA–SANTOS ET AL. 2013, VON ARX ET AL. 2013). Those accessory bone channels either reach the apices of the anterior teeth or perforate the cortex on the palatal aspect of the anterior teeth (Fig. 8 and 9). We speculate that there is additional neural supply to the anterior palate via these structures, since some of the evaluated specimens showed fine neurovascular structures continuing from the piriform canal deep into the palatal alveolar bone below the anterior nasal floor. Thus, sensitivity in the anterior palate may be sustained after sectioning the nasopalatine nerve via branches from the ASAN, and not necessarily from the greater palatine nerve, as has previously been postulated (LANGFORD ET AL. 1989, FILIPPI ET AL. 1999). SONG ET AL. (2012) suggested that the lower portion of the canalis sinuosus, the piriform canal, reached the midline and might anastomose with the contralateral side, explaining anesthesia failure of central incisors after an infraorbital block due to cross-innervation via a contralateral ASAN branch. In addition, superimposition of the lower portion of the canalis sinuosus (or its continuing accessory bone channels) onto the anterior maxillary teeth may mimic intra- or periradicular lesions (SHELLEY ET AL. 1999).

In conclusion, the present cadaver study has morphometrically evaluated the course of the ASAN relative to adjacent anatomical landmarks which are readily discernible radiographically and intraoperatively, i.e. the infraorbital foramen and the nasal aperture. This information is useful to prevent neurovascular damage to the ASAN and artery during interventions in the infraorbital region of the maxilla.

**Fig. 8** Coronal (a) and sagittal (b) reformed CBCT images of a 22-year old male showing AC (originating from CS) supplying the right central maxillary incisor.

**Fig. 9** Coronal (a) and sagittal (b) reformed CBCT images of a 72-year old male showing AC (originating from CS) reaching the palate posterior to the right lateral maxillary incisor.
Acknowledgements

The authors thank Steven Labrash, Director of Willed Body Pro-
gram, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Hon-
lulu, HI/USA, for his commitment and support. The authors 
also thank Ines Badertscher and Bernadette Rawyler, both form 
the School of Dental Medicine, University of Bern, Bern, Swit-
zerland, for helping with the figures.

Finally, the authors wish to express their deep gratitude to 
the donors of the cadavers used in this anatomical study.

Résumé

Le nerf alvéolaire antéro-supérieur: 
a une analyse morphométrique et anatomique

Le trajet du nerf alvéolaire antéro-supérieur fut décrit pour la 
première fois en 1939 par Wood-Jones. Le nerf alvéolaire anté-
ro-supérieur est une branche du nerf infra-orbitaire et émerge 
de celui-ci dans le canal infra-orbitaire en dessous de la cavité 
orbitaire. Ensuite, le nerf alvéolaire antéro-supérieur se dirige 
towards antéro-lateral, traverse le canal sinusus dans la paroi an-
térieure du sinus maxillaire pour ensuite se diriger vers l’orifice 
piriforme. Ici, le nerf alvéolaire antéro-supérieur tourne de ma-
nière aiguë vers le bas (loop) et poursuit son trajet dans la paroi 
latérale de la cavité nasale vers la partie antérieure de la mâ-
che supérieure. C’est dans cette région que se trouvent des 
ramications du nerf vers les apex des dents antérieures, mais 
aussi vers la partie antérieure du palais. Peu d’études ont analy-
isé le trajet du nerf alvéolaire antéro-supérieur du point de vue 
morphométrique. L’étage moyen de la face de dix semi-têtes de 
cadavres frais adultes a été désséqué de toutes les parties molles 
pour exposer la partie antérieure de l’os maxillaire. Ensuite les 
préparations ont été décalcifiées pour éliminer la fine couche 
ossée qui recouvrait le nerf alvéolaire antéro-supérieur et 
pour exposer ce nerf. Le trajet et les ramifications du nerf alvéo-
laire antéro-supérieur dans la paroi antérieure du sinus maxil-
laire ont été documentés, photographiés, et des mesures avec 
un instrument digital ont été faites par rapport à des points de 
reférence (foramen infra-orbitaire, orifice piriforme, etc.). Le 
nerf alvéolaire antéro-supérieur a pu être identifié dans toutes 
ses travées. L’origine de ce nerf était latérale du nerf infra-
orbitaire dans six cas et caudale dans quatre cas. En moyenne, 
la ramification se trouvait 12,2 ± 5,79 mm postérieur du fora-
men infra-orbitaire. Ensuite le nerf alvéolaire antéro-supérieur 
se dirigeait vers la paroi antérieure du sinus maxillaire où il pas-
sait en moyenne 2,8 ± 5,13 mm latéral du foramen infra-orbi-
taire. Puis, le nerf tournait vers médiale et passait en moyenne 
5,5 ± 3,07 mm au-dessous du foramen infra-orbitaire pour tra-
verser la paroi antérieure du sinus maxillaire, en direction de 
l’orifice piriforme. Ensuite, le nerf alvéolaire antéro-supérieur 
tournait de manière aiguë (ce «loop») et, pour diriger le long 
de l’orifice piriforme en direction caudale. L’écart moyen 
entre le nerf et l’orifice piriforme était de 4,3 ± 2,74 mm (mesuré 
at un niveau à mi-distance entre «loop» et plancher nasal) et 
3,3 ± 2,60 mm (mesuré au niveau du plancher nasal). Cette étude 
presente des informations morphométriques qui sont impor-
tantes pour documenter le trajet du nerf alvéolaire antéro-
supérieur et pour aider à éviter des dommages du nerf lors 
d’interventions dans la région infra-orbitaire. Ces dernières 
corent concernent essentiellement des interventions chirurgicales 
dans la région de la paroi antérieure du sinus maxillaire, par 
exemple l’ostéotomie maxillaire de Le Fort I ou l’antrotomie 

Zusammenfassung

Der Nervus alveolaris superior anterior: 
a eine morphometrisch-anatomische Analyse

Der Verlauf des N. alveolaris superior anterior wurde erstmals 
1939 von Wood-Jones beschrieben. Der N. alveolaris superior 
Vorderinterpret ist ein Ast des N. infraorbitalis und entspringt aus diesem 
innerhalb des Canalis infraorbitalis unterhalb der Augen-
höhle. Danach zieht der N. alveolaris superior anterior nach vor-
ne-lateral, um dann im sogenannten Canalis sinusosus innerhalb 
der Kieferhöhlerwanderwand nach medial zur Apertura pirifo-
rmis zu ziehen. Hat er diese erreicht, biegt er scharf nach kaudal 
ab (loop) und zieht dann entlang der lateralen Wand der Na-
sehenöhle nach unten zum anteriorer Oberkiefer. Dort finden 
Zweigungen zu den Apices der Frontzähne, aber auch 
zum anterioren Gaumen. Nur wenige Studien haben den Ver-
lauf des N. alveolaris superior anterior morphometrisch ausge-
wertet. Das Mittelgesicht von zehn hemicisezied, frischen 
Leichenköpfen von Erwachsenen wurde von allen Weichteilen 
freipräpariert, um die Vorderwand der Maxilla darzustellen. 
Anschliessend wurden die Präparate entkalt, um die den 
N. alveolaris superior anterior bedeckende dünne Knochen-
schicht entfernen und den Nerven exponieren zu können. Der 
Verlauf und die Zweigungen des N. alveolaris superior anterior 
innerhalb der Kieferhöhlerwanderwand wurden aufgezeichnet, 
fotografiert und mit einem digitalen Messinstrument mor-
phometrisch in Bezug zu Referenzpunkten (Foramen infra-
bitale, Apertura piniformis etc.) bestimmt. Der Nerv konnte in 
allen Präparaten eindeutig identifiziert werden. In sechs Fällen 
hatte der N. alveolaris superior anterior seinen Ursprung lateral 
in vier Fällen kaudal vom N. infraorbitales. Diese Verwei-
gungsstelle befand sich durchschnittlich 12,2 ± 5,79 mm poste-
rrior vom Foramen infraorbitale. Der N. alveolaris superior anterior 
zog dann nach vorne zur Kieferhöhlerwanderwand, wobei er 
durchschnittlich 2,8 ± 5,13 mm lateral vom Foramen infraorbitale 
verlief. Danach bog der N. alveolaris superior anterior nach medial 
ab und zog durchschnittlich 5,5 ± 3,07 mm unterhalb des Fora-
men infraorbitale durch die Kieferhöhlerwanderwand zur nas-
enen Apertur. Dort bog der Nerv als „Loop“ scharf nach kaudal 
ab (in einer durchschnittlichen Distanz von 13,6 ± 3,07 mm 
obenhalb des Nasenbodens) und zog entlang der Apertura piri-
formis nach unten. Im Mittel betrugen die Abstände zwischen 
Nerv und knöcherner Nasenöffnung 4,3 ± 2,74 mm (auf Niveau 
halbe Distanz vom Loop zum Nasenboden) und 3,3 ± 2,60 mm 
(auf Niveau Nasenboden). Die in dieser Studie ermittelten mor-

du sinus maxillaire (accès par la fosse canine). Dans la littéra-
ture, des troubles de sensibilité postopératoires de la gencive et 
des dents ont été décrits après les interventions mentionnées 
ci-dessus. De plus, de nouvelles études radiologiques avec la 
tomographie volumétrique numérisée ont documenté le trajet 
du canalis 9sinuosus et de ses canaux accessoires vers la mâchoire 
supérieure antérieure, ce qui est aussi intéressant pour le méde-
cin-dentiste. Une sensibilité persistante d’une incisive maxil-
laire supérieure centrale après une anesthésie au niveau du fora-
men infra-orbitaire (bloc du nerf infra-orbitaire) pourrait être 
due à une innervation du nerf alvéolaire antéro-supérieur 
contralatéral. Aussi des projections radiologiques du canalis 
9sinuosus ou de ses canaux accessoires sur les racines des ca-
nines ou incisives maxillaires peuvent être confondues avec 
des lésions intra- ou périradicales. C’est pour ces raisons que 
Pour le praticien, il est utile de connaître le trajet du nerf alvéo-
laire antéro-supérieur, respectivement du canalis sinusosus.


References


